Question : If $\sin \theta + \operatorname{cosec} \theta = \sqrt{5}$, the value of $\sin^3 \theta + \operatorname{cosec}^3 \theta = $?
Option 1: $0$
Option 2: $3 \sqrt{5}$
Option 3: $\frac{1}{\sqrt{5}}$
Option 4: $2 \sqrt{5}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2 \sqrt{5}$
Solution : Given: $\sin \theta + \operatorname{cosec}\ \theta = \sqrt{5}$ Cubing both sides of the given expression, we get, ($\sin\ \theta + \operatorname{cosec} \theta)^3 = (\sqrt{5})^3$ $⇒\sin^3 \theta + \operatorname{cosec}^3 \theta + 3\sin\ \theta × \operatorname{cosec} \theta(\sin\ \theta + \operatorname{cosec} \theta) = (5\sqrt{5})$ $⇒\sin^3 \theta + \operatorname{cosec}^3 \theta + 3\sqrt{5} = 5\sqrt{5}$ $⇒\sin^3 \theta + \operatorname{cosec}^3 \theta = 5\sqrt{5} – 3\sqrt{5}$ $⇒\sin^3 \theta + \operatorname{cosec}^3 \theta = 2\sqrt{5}$ Hence, the correct answer is $2\sqrt{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\operatorname{cosec}\theta+\sin\theta=\frac{5}{2}$, then the value of $(\operatorname{cosec}\theta-\sin\theta)$ is:
Question : If $\operatorname{cosec} \theta+\cot \theta=2$, then what is the value of $\operatorname{cosec} \theta$?
Question : If $\sin\theta+\operatorname{cosec}\theta=2$, the value of $\sin^{n}\theta+\operatorname{cosec}^{n}\theta$ is:
Question : If $\operatorname{cosec} \theta + \operatorname{cot} \theta = m$, find the value of$\frac{m^2 – 1}{m^2 + 1}$
Question : The expression $\frac{\cos ^4 \theta-\sin ^4 \theta+2 \sin ^2 \theta+3}{(\operatorname{cosec} \theta+\cot \theta+1)(\operatorname{cosec} \theta-\cot \theta+1)-2}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile