4 Views

Question : If the volume of a cube is 5832 cm3, then what is the lateral surface area of this cube?

Option 1: 1024 cm2

Option 2: 384 cm2

Option 3: 576 cm2

Option 4: 1296 cm2


Team Careers360 10th Jan, 2024
Answer (1)
Team Careers360 17th Jan, 2024

Correct Answer: 1296 cm 2


Solution : The volume of a cube is given by the formula \(V = a^3\), where \(a\) is the edge length of the cube.
Given that the volume of the cube is 5832 cm 3 .
$a = \sqrt[3]{V} = \sqrt[3]{5832} = 18 \, \text{cm}$
The lateral surface area of a cube is:
$A = 4a^2 = 4 \times 18^2 = 1296 \, \text{cm}^2$
Hence, the correct answer is 1296 cm 2 .

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books