Question : If $\sqrt x-\sqrt y=1$ , $\sqrt x+\sqrt y=17$, then $\sqrt {xy}=?$
Option 1: $\sqrt{72}$
Option 2: $72$
Option 3: $32$
Option 4: $24$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $72$
Solution : $\sqrt{x}-\sqrt{y} = 1$------(1) ⇒ $\sqrt{x} =1 +\sqrt{y}$ Inserting the value of $\sqrt{x}$ in the other equation, we get, $\sqrt{x} +\sqrt{y} = 17$ ⇒ $1+\sqrt{y} +\sqrt{y} = 17$ ⇒ $2\sqrt{y} = 16$ ⇒ $\sqrt{y} = 8$ Putting the value of $\sqrt{y} = 8$ in equation (1), we get, $\sqrt{x} - 8= 1$ $\therefore \sqrt{x} = 9$ So, $\sqrt{xy} = \sqrt{x} × \sqrt{y} = 9 × 8 = 72$ Hence, the correct answer is $72$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Question : If $x^3=270+y^3$ and $x=(6+y)$, then what is the value of $(x+y)? $(given that $x>0$ and $y>0$)
Question : If $x+y=4, x^{2}+y^{2}=14$ and $x>y$, then the correct value of $x$ and $y$ is:
Question : If $x^2+y^2=427$ and $xy=202$, then find the value of $\frac{x+y}{x-y}$.
Question : Simplify $(3 x+2 y)^2-(3 x-2 y)^2$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile