Question : If $\sec \theta+\tan \theta=5$, then $\operatorname{sin} \theta=$________.
Option 1: $0$
Option 2: $\frac{13}{12}$
Option 3: $\frac{12}{13}$
Option 4: $\frac{1}{5}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{12}{13}$
Solution : $\sec \theta+\tan \theta=5$---(1) We know, $\sec^2 \theta-\tan^2 \theta=1$ ⇒ $(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=5$ ⇒ $\sec \theta-\tan \theta=\frac{1}{5}$---(2) Solving equations 1 and 2, we get, $\sec \theta=\frac{13}{5}$, $\tan\theta=\frac{12}{5}$ So, $\cos\theta=\frac{1}{\sec\theta}=\frac{5}{13}$ $\tan\theta=\frac{12}{5}$ ⇒ $\frac{\sin\theta}{\cos\theta}=\frac{12}{5}$ ⇒ $\frac{\sin\theta}{\frac{5}{13}}=\frac{12}{5}$ $\therefore \sin \theta=\frac{12}{13}$ Hence, the correct answer is $\frac{12}{13}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\operatorname{tan} \theta=\frac{3}{4}$, then find the value of expression $\frac{1+\operatorname{sin} \theta}{1-\operatorname{sin} \theta}$.
Question : If $\sqrt{2} \sec ^2 \theta-4 \sec \theta+2 \sqrt{2}=0$, then what is the value $\sin ^2 \theta+\tan ^2 \theta$?
Question : If $\sin \theta-\cos \theta=0$, then what is the value of $\sin ^2 \theta+\tan ^2 \theta$ ?
Question : If $(r\cos \theta -\sqrt{3})^{2}+(r\sin \theta -1)^{2}=0$, then the value of $\frac{r\tan \theta +\sec \theta}{r\sec \theta +\tan\theta}$ is equal to:
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile