Question : If $x^2+y^2+2 y+4 x+5=0$, then $\frac{x+y}{x-y}=$______.
Option 1: $-3$
Option 2: $\frac{1}{3}$
Option 3: $-1$
Option 4: $3$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3$
Solution : Given equation, $x^2+y^2+2 y+4 x+5=0$ Let us try to make it a perfect square. $x^2+4 x+y^2+2 y+5=0$ ⇒ $x^2 + 4x + 4 -4 + y^2 +2y + 1 -1 + 5=0$ ⇒ $(x+2)^2 + (y+1)^2 -5 + 5 = 0$ ⇒ $(x+2)^2 + (y+1)^2 = 0$ ⇒ $(x+2)^2=0$ and $(y+1)^2 = 0$ [If the sum of two squares is zero then each term individually will also be zero] ⇒ $x+2 = 0$ and $y+1 = 0$ ⇒ $x=-2$ and $y=-1$ $\therefore$ $\frac{x+y}{x-y}=\frac{-2-1}{-2+1}=\frac{-3}{-1}=3$ Hence, the correct answer is 3.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x^4+y^4+x^2 y^2=17 \frac{1}{16}$ and $x^2-x y+y^2=5 \frac{1}{4}$, then one of the values of $(x-y)$ is:
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $2 x-y=2$ and $x y=\frac{3}{2}$, then what is the value of $x^3-\frac{y^3}{8}?$
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile