Question : If $4 \tan \theta=3$, then $\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}=?$
Option 1: $\frac{14}{11}$
Option 2: $\frac{12}{11}$
Option 3: $\frac{10}{11}$
Option 4: $\frac{13}{11}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{13}{11}$
Solution : Let $\angle BCA =\theta$ $4 \tan \theta=3$ ⇒ $\tan \theta = \frac{3}{4}$ So, let the height and base be 3 units and 4 units respectively. ⇒ $\sin \theta = \frac{3}{\sqrt{3^2+4^2}} = \frac{3}{5}$ ⇒ $\cos \theta = \frac{4}{\sqrt{3^2+4^2}} = \frac{4}{5}$ So, $\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}$ $=\frac{4 ×\frac{3}{5}-\frac{4}{5}+1}{4 ×\frac{3}{5}+\frac{4}{5}-1}$ $=\frac{\frac{12}{5}-\frac{4}{5}+1}{\frac{12}{5}+\frac{4}{5}-1}$ $=\frac{\frac{8}{5}+1}{\frac{16}{5}-1}$ $=\frac{\frac{13}{5}}{\frac{11}{5}}$ $=\frac{13}{11}$ Hence, the correct answer is $\frac{13}{11}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : What is $\tan \frac{\theta}{2}$?
Question : $\frac{1+\sin \theta}{\cos \theta}$ is equal to which of the following (where $\left.\theta \neq \frac{\pi}{2}\right)?$
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile