Question : If $(\frac{\sec \theta-1}{\sec \theta+1})^n=\operatorname{cosec} \theta-\cot \theta$, then $n=?$
Option 1: 1
Option 2: 0.5
Option 3: –1
Option 4: –0.5
Correct Answer: 0.5
Solution : Given expression, $(\frac{\sec \theta-1}{\sec \theta+1})^n=\operatorname{cosec} \theta-\cot \theta$ Considering L.H.S., We know, $\sec\theta=\frac{1}{\cos\theta}$ = $\left\{\frac{\frac{1}{\cos\theta}-1}{\frac{1}{\cos\theta}+1}\right\}^n$ = $\left\{\frac{1-\cos\theta}{1+\cos\theta}\right\}^n$ Multiplying and dividing by $1-\cos\theta$, we get, = $\left\{\frac{1-\cos\theta}{1+\cos\theta}\times\frac{1-\cos\theta}{1-\cos\theta}\right\}^n$ = $\left\{\frac{(1-\cos\theta)^2}{1-\cos^2\theta}\right\}^n$ = $\left\{\frac{(1-\cos\theta)^2}{\sin^2\theta}\right\}^n$ Now consider R.H.S, $\operatorname{cosec} \theta-\cot \theta$ We know, $\operatorname{cosec} \theta=\frac{1}{\sin\theta}$ and $\cot\theta=\frac{\cos\theta}{\sin\theta}$ = $\frac{1}{\sin\theta}-\frac{\cos\theta}{\sin\theta}$ = $\frac{1-\cos\theta}{\sin\theta}$ Equating with L.H.S, we get, ⇒ $2n=1$ $\therefore n=0.5$ Hence, the correct answer is 0.5.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : If $\cot^2θ = 1 - e^2$, then the value of $\operatorname{cosec} θ + \cot^3θ \sec θ$ is:
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Question : If $\tan (11 \theta)=\cot (7 \theta)$, then what is the value of $\sin ^2(6 \theta)+\sec ^2(9 \theta)+\operatorname{cosec}^2(12 \theta) ?$
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile