Question : If $21 \tan \theta=20$, then $(1+\sin \theta+\cos \theta):(1-\sin \theta+\cos \theta)=$?
Option 1: 5 : 2
Option 2: 3 : 1
Option 3: 7 : 3
Option 4: 2 : 1
Correct Answer: 7 : 3
Solution : Given: $21 \tan \theta=20$ ⇒ $\tan \theta = \frac{20}{21}=\frac{\text{Perpendicular}}{\text{Base}}$ Let the perpendicular and the base be 20 units and 21 units respectively. Use the formulas, $\tan \theta=\frac{\text{Perpendicular}}{\text{Base}}$, $\sin \theta=\frac{\text{Perpendicular}}{\text{Hypotenuse}}$, $\cos \theta=\frac{\text{Base}}{\text{Hypotenuse}}$, Pythagoras's theorem: $\text{Hypotenuse}^2=\text{Base}^2+\text{Perpendicular}^2$ ⇒ $\text{Hypotenuse}^2={21}^2+{20}^2$ ⇒ $\text{Hypotenuse}^2=441+400$ ⇒ $\text{Hypotenuse}^2=841$ ⇒ $\text{Hypotenuse}=\sqrt{841}$ ⇒ $\text{Hypotenuse}=29$ The value of $(1+\sin \theta+\cos \theta):(1-\sin \theta+\cos \theta)$ is given as, $=(1+\frac{20}{29}+\frac{21}{29}):(1-\frac{20}{29}+\frac{21}{29})$ $=\frac{29+20+21}{29}:\frac{29–20+21}{29}$ $=\frac{70}{29}:\frac{30}{29}=7:3$ Hence, the correct answer is 7 : 3.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$, then $(\cos \theta+\sin \theta)$ is:
Question : If $\cos ^2 \theta-\sin ^2 \theta=\tan ^2 \phi$, then which of the following is true?
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then what is $\sin \theta-\cos \theta$?
Question : If $\sin \theta+\cos \theta=\sqrt{2} \cos \theta$, then find $\frac{\sin \theta-\cos \theta}{\sin \theta}$:
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then the value of $(\cos \theta-\sin \theta)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile