Question : If $x^2-\sqrt{7} x+1=0$, then $\left(x^3+x^{-3}\right)=?$
Option 1: $4 \sqrt{7}$
Option 2: $3 \sqrt{7}$
Option 3: $10 \sqrt{7}$
Option 4: $7 \sqrt{7}$
Correct Answer: $4 \sqrt{7}$
Solution : Given: $x^2-\sqrt{7} x+1=0$ Dividing both sides by $x$, we get: ⇒ $x-\sqrt{7}+\frac{1}{x}=0$ ⇒ $x+\frac{1}{x}=\sqrt{7}$ Cubing both sides, we get: ⇒ $(x+\frac{1}{x})^3=(\sqrt{7})^3$ ⇒ $x^3+\frac{1}{x^3}+3(x\times\frac{1}{x})(x+\frac{1}{x})=(\sqrt{7})^3$ ⇒ $x^3+\frac{1}{x^3}+3\times\sqrt7=7\sqrt{7}$ ⇒ $x^3+\frac{1}{x^3}=4\sqrt{7}$ Hence, the correct answer is $4\sqrt{7}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\sqrt{x}+\frac{1}{\sqrt{x}}=3, x>0$, then $x^2\left(x^2-47\right)=?$
Question : If $x^2-3 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$; then what is the value of $x+\frac{1}{x}$?
Question : If $x^2-5 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then the value of $(3 A+B-\sqrt{15} C)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile