Question : If $a=\sqrt{6}+\sqrt{5},b=\sqrt{6}-\sqrt{5}$, then $2a^{2}-5\; ab+2b^{2} =?$
Option 1: 38
Option 2: 39
Option 3: 40
Option 4: 41
Correct Answer: 39
Solution : Given: $a=\sqrt{6}+\sqrt{5}$ and $b=\sqrt{6}-\sqrt{5}$ Then, $a^{2} = (\sqrt{6}+\sqrt{5})^{2} = 6 + 2\sqrt{30} + 5 = 11 + 2\sqrt{30}$ $b^{2} = (\sqrt{6}-\sqrt{5})^{2} = 6 - 2\sqrt{30} + 5 = 11 - 2\sqrt{30}$ Now, the product of $a$ and $b$: $ab = (\sqrt{6}+\sqrt{5})(\sqrt{6}-\sqrt{5}) = 6 - 5 = 1$ Putting the values into the given expression: $2a^{2}-5ab+2b^{2} = 2(11 + 2\sqrt{30}) - 5(1) + 2(11 - 2\sqrt{30})$ Simplifying this, we get: $= 22 + 4\sqrt{30}- 5 + 22 - 4\sqrt{30}$ $=44-5 = 39$ Hence, the correct answer is 39.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $a^2+b^2+c^2+84 = 4(a - 2b + 4c)$, then $\sqrt{ab - bc + ca}$ is equal to:
Question : If $a-\frac{1}{a}=4$, then the value of $a+\frac{1}{a}$ is:
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : The smallest among $\sqrt[6]{12},\sqrt[3]{4},\sqrt[4]{5},\sqrt3$ is:
Question : Evaluate: $\frac{\sqrt{24}+\sqrt{6}}{\sqrt{24}-\sqrt{6}}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile