Question : If $a^{4} + b^{4} = a^{2}b^{2}$, then $(a^{6} + b^{6})$ equals:
Option 1: $0$
Option 2: $1$
Option 3: $a^{2}+b^{2}$
Option 4: $a^{2}b^{4}+a^{4}b^{2}$
Correct Answer: $0$
Solution : Given: $a^{4} + b^{4} = a^{2}b^{2}$ Now, $(a^{6} + b^{6})$ $=(a^2)^3+(b^2)^3$ $=(a^{2} + b^{2})(a^{4} + b^{4} - a^{2}b^{2})$ $= (a^{2} + b^{2})(a^{2}b^{2} - a^{2}b^{2})$ $=0$ Hence, the correct answer is $0$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $3P=2Q$ and $2Q=3R$, then what is $P:Q:R$?
Question : If $\left (2a-3 \right )^{2}+\left (3b+4 \right )^{2}+\left ( 6c+1\right)^{2}=0$, then the value of $\frac{a^{3}+b^{3}+c^{3}-3abc}{a^{2}+b^{2}+c^{2}}+3$ is:
Question : If $x^4+y^4=x^2 y^2$, then the value of $x^6+y^6$ is:
Question : If $a^2+b^2+1=2 a$, then the value of $a^4+b^7$ is:
Question : If $\sin^2\theta = \cos^3\theta$, then the value of $(\cot^2\theta -\cot^6\theta)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile