Question : If $\sqrt{1+\frac{x}{144}} = \frac{13}{12}$, then $x$ equals to:
Option 1: 1
Option 2: 13
Option 3: 27
Option 4: 25
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 25
Solution : Given: $\sqrt{1+\frac{x}{144}} = \frac{13}{12}$ Squaring both sides, we get ⇒ ${1+\frac{x}{144}} = \frac{169}{144}$ ⇒ ${\frac{144+x}{144}} = \frac{169}{144}$ ⇒ $144 + x = 169$ $\therefore x = 25$ Hence, the correct answer is 25.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+ \frac{1}{x} =\sqrt{13}$, then $\frac{3x}{{x}^{2} -1}$ equals to:
Question : If $\cos x+\sec x=\frac{7}{2 \sqrt{3}}$, then the value of $\cos ^2 x+\sec ^2 x$ will be_____.
Question : If $x=\frac{1}{x-3},(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $2x^2+5 x+1=0$, then one of the values of $x-\frac{1}{2 x}$ is:
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile