Question : If $\frac{1}{x}+x=4$, then find $\frac{1}{x^2}+x^2$.
Option 1: 14
Option 2: 5
Option 3: 7
Option 4: 15
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 14
Solution : $\frac{1}{x}+x=4$ squaring both sides we get, ⇒ $(\frac{1}{x}+x)^2=4^2$ ⇒ $\frac{1}{x^2}+2×\frac{1}{x}×x+x^2=16$ ⇒ $\frac{1}{x^2}+x^2=16-2$ ⇒ $\frac{1}{x^2}+x^2=14$ Hence, the correct answer is 14.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : If $2=x+\frac{1}{1+\frac{1}{5+\frac{1}{2}}}$, then the value of $x$ is equal to:
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $\frac{10x}{3}+\frac{5}{2}(2-\frac{x}{3})=\frac{7}{2}$, then the value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile