Question : If $\sin \theta+\cos \theta=\sqrt{2} \cos \theta$, then find $\frac{\sin \theta-\cos \theta}{\sin \theta}$:
Option 1: $-\sqrt{2}$
Option 2: $-1$
Option 3: $1$
Option 4: $\sqrt{2}$
Correct Answer: $-\sqrt{2}$
Solution : Given, $\sin \theta+\cos \theta=\sqrt{2} \cos \theta$ Squaring both sides, we get $\sin^2θ+\cos^2θ+2\sinθ\cosθ=2\cos^2θ$ ⇒ $\sin^2θ−\cos^2θ+2\sinθ\cosθ=0$ Subtracting $2\sin^2θ$ both sides, we have ⇒ $−\sin^2θ−\cos^2θ+2\sinθ\cosθ=−2\sin^2θ$ ⇒ $\sin^2θ+\cos^2θ−2\sinθ\cosθ=2\sin^2θ$ ⇒ $(\cosθ−\sinθ)^2=2\sin^2θ$ ⇒ $\cosθ−\sinθ=\sqrt2\sinθ$ ⇒ $\sinθ-\cosθ=-\sqrt2\sinθ$ ⇒ $\frac{\sin \theta-\cos \theta}{\sin \theta}=\frac{-\sqrt2\sinθ}{\sinθ}$ $=-\sqrt2$ Hence, the correct answer is $-\sqrt2$
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then what is $\sin \theta-\cos \theta$?
Question : If $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$, then $(\cos \theta+\sin \theta)$ is:
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then the value of $(\cos \theta-\sin \theta)$ is:
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile