Question : If $(\frac{5}{9}\times x)-(\frac{2}{5}\times \frac{9}{4})=-\frac{4}{5}$, then find $x$.
Option 1: 0.18
Option 2: 0.12
Option 3: 2
Option 4: 0.54
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0.18
Solution : Given: $(\frac{5}{9}\times x)-(\frac{2}{5}\times \frac{9}{4})=-\frac{4}{5}$ ⇒ $\left ( \frac{5}{9} \times x \right ) - \frac{9}{10} = -\frac{4}{5}$ ⇒ $\frac{5}{9}x = -\frac{4}{5} + \frac{9}{10}$ ⇒ $\frac{5}{9}x = \frac{1}{10}$ ⇒ $x=\frac{9}{50}$ ⇒ $x$ = 0.18 Hence, the correct answer is 0.18.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Question : If $\frac{1}{x}+x=4$, then find $\frac{1}{x^2}+x^2$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile