Question : If $8 \cot A = 7$, then find $\sin A$.
Option 1: $\frac{7}{15}$
Option 2: $\frac{8}{\sqrt{113}}$
Option 3: $\frac{7}{8}$
Option 4: $\frac{8}{7}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{8}{\sqrt{113}}$
Solution : Given: $8 \cot A = 7$ ⇒ $\cot A = \frac{7}{8}$ We know that $\operatorname{cosec^2 A}-\cot^2A=1$ ⇒ $\operatorname{cosec^2 A}- (\frac{7}{8})^2=1$ ⇒ $\operatorname{cosec^2 A}=1+\frac{49}{64}$ ⇒ $\operatorname{cosec A}=\sqrt{\frac{113}{64}}=\frac{\sqrt{113}}{8}$ ⇒ $\sin A=\frac{8}{\sqrt{113}}$ Hence, the correct answer is $\frac{8}{\sqrt{113}}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\cot A=1, \sin B=\frac{1}{\sqrt{2}}$, find the value of $\sin (A+B)-\cot (A+B)$.
Question : Find the value of $\frac{\cos^2 15^{\circ}-\sin^2 15^{\circ}}{\cos^2 145^{\circ}+\sin^2 145^{\circ}}$.
Question : In a right triangle for an acute angle $x$, if $\sin x=\frac{3}{7}$, then find the value of $\cos x$.
Question : If $\tan A=\frac{2}{3}$, then find $\sin A$.
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{3}-1}{2 \sqrt{2}}$, then what is the value of $\tan \theta+\cot \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile