Question : If $\sin t+\cos t=\frac{4}{5}$, then find $\sin t.\cos t$.
Option 1: $\frac{9}{50}$
Option 2: $-\frac{9}{50}$
Option 3: $\frac{9}{25}$
Option 4: $-\frac{9}{25}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $-\frac{9}{50}$
Solution : Given: $\sin t+\cos t=\frac{4}{5}$ Squaring both sides, we have, ⇒ $(\sin t+\cos t)^{2}=(\frac{4}{5})^{2}$ ⇒ $\sin^{2} t+\cos^{2} t+2\sin t.\cos t=\frac{16}{25}$ We know that $\sin^{2} t+\cos^{2}=1$ ⇒ $1+2\sin t.\cos t=\frac{16}{25}$ ⇒ $2\sin t.\cos t=\frac{16}{25}–1$ ⇒ $2\sin t.\cos t=-\frac{9}{25}$ ⇒ $\sin t.\cos t=-\frac{9}{50}$ Hence, the correct answer is $-\frac{9}{50}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{21\cos A+3\sin A}{3\cos A+4\sin A}=2$, then find the value of cot A.
Question : If $\sin \theta-\cos \theta=\frac{4}{5}$, then find the value of $\sin \theta+\cos \theta$.
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\tan A=\frac{3}{8}$, then the value of $\frac{3 \sin A+2 \cos A}{3 \sin A-2 \cos A}$ is:
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile