Question : If $\tan \frac{\pi}{6}+\sec\frac{\pi}{6}=x$, then find $x$.
Option 1: $\sqrt{3}$
Option 2: $\frac{1}{\sqrt{3}}$
Option 3: $\frac{-1}{\sqrt{3}}$
Option 4: $\frac{2}{\sqrt{3}}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{3}$
Solution : Given: $\tan \frac{\pi}{6}+\sec\frac{\pi}{6}=x$ ⇒ $\tan30^\circ+\sec30^\circ=x$ ⇒ $x=\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{3}}$ ⇒ $x=\frac{3}{\sqrt{3}}$ $\therefore x =\sqrt{3}$ Hence, the correct answer is $\sqrt{3}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In a triangle $XYZ$ right-angled at $Y$, if $XY=2\sqrt{6}$ and $XZ-YZ=2$, then $\sec X+\tan X$ is:
Question : If $\cos x=-\frac{1}{2}, x$ lies in third quadrant, then $\tan x=?$
Question : If $\cos27^{\circ}$ = $x$, then the value of $\tan 63°$ is:
Question : If $\tan \frac{A}{2}=x$, then find $x$.
Question : Find the value of $\sec\theta - \tan\theta$, if $\sec\theta + \tan\theta = \sqrt{5}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile