Question : If $\tan \frac{A}{2}=x$, then find $x$.
Option 1: $\frac{\sqrt{1+\cos A}}{\sqrt{1-\cos A}}$
Option 2: $\frac{\sqrt{1-\sin A}}{\sqrt{1+\cos A}}$
Option 3: $\frac{\sqrt{1-\cos A}}{\sqrt{1+\cos A}}$
Option 4: $\frac{\sqrt{\cos A-1}}{\sqrt{1+\cos A}}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{1-\cos A}}{\sqrt{1+\cos A}}$
Solution : Given: $\tan\frac{A}{2}=x$ We know, $\cos A=1-2\sin^2(\frac{A}{2})$ ⇒ $\sin(\frac{A}{2})=\sqrt{\frac{1–\cos A}{2}}$ Also, $\cos A=2\cos^2(\frac{A}{2})–1$ ⇒ $\cos(\frac{A}{2})=\sqrt{\frac{1+\cos A}{2}}$ Now, $\tan\frac{A}{2}=\frac{\sin(\frac{A}{2})}{\cos(\frac{A}{2})}$ ⇒ $x=\sqrt{\frac{1–\cos A}{2}}×\sqrt{\frac{2}{1+\cos A}}$ $\therefore x=\frac{\sqrt{1-\cos A}}{\sqrt{1+\cos A}}$ Hence, the correct answer is $\frac{\sqrt{1-\cos A}}{\sqrt{1+\cos A}}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In $\triangle{XYZ}$, right-angled at $Y$, if $\sin X = \frac{1}{2}$, find the value of $\cos X \cos Z + \sin X \sin Z$.
Question : If $\cos x=-\frac{1}{2}, x$ lies in third quadrant, then $\tan x=?$
Question : If $\cos x+\sin x=\sqrt{2} \cos x$, what is the value of $(\cos x-\sin x)^2+(\cos x+\sin x)^2$?
Question : Using $\cos (A+B)=\cos A \cos B-\sin A \sin B$, find the value of $\cos 75^\circ$.
Question : In a right triangle for an acute angle $x$, if $\sin x=\frac{3}{7}$, then find the value of $\cos x$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile