Question : If $a+b+c+d=4$, then find the value of $\frac{1}{(1-a)(1-b)(1-c)}+\frac{1}{(1-b)(1-c)(1-d)}+\frac{1}{(1-c)(1-d)(1-a)}+\frac{1}{(1-d)(1-a)(1-b)}$?
Option 1: 0
Option 2: 5
Option 3: 1
Option 4: 4
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : Given: $a+b+c+d=4$ $\frac{1}{(1-a)(1-b)(1-c)}+\frac{1}{(1-b)(1-c)(1-d)}+\frac{1}{(1-c)(1-d)(1-a)}+\frac{1}{(1-d)(1-a)(1-b)}$ = $\frac{1-d+1-a+1-b+1-c}{(1-a)(1-b)(1-c)(1-d)}$ = $\frac{4-(a+b+c+d)}{(1-a)(1-b)(1-c)(1-d)}$ = $\frac{4-4}{(1-a)(1-b)(1-c)(1-d)}$ = $\frac{0}{(1-a)(1-b)(1-c)(1-d)}$ = $0$ Hence, the correct answer is 0.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\small c+\frac{1}{c}=3$, then the value of $\left (c-3 \right )^{7}+\frac{1}{c^{7}}$ is:
Question : If $x+\frac{1}{x}=0$, then the value of $x^{5}+\frac{1}{x^{5}}$ is:
Question : If 3 cot A = 4 and A is an acute angle, then find the value of sec A.
Question : If $a^3+b^3=9$ and $a+b=3$, then the value of $\frac{1}a+\frac{1}b$ is:
Question : The value of the expression $\frac{(a-b)^{2}}{(b-c)(c-a)}+\frac{(b-c)^{2}}{(a-b)(c-a)}+\frac{(c-a)^{2}}{(a-b)(b-c)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile