Question : If $\operatorname{cosec} \theta=1 \frac{7}{22}$, then find the value of $\cot ^2 \theta$.
Option 1: $\frac{49}{484}$
Option 2: $\frac{357}{484}$
Option 3: $\frac{225}{484}$
Option 4: $\frac{7}{22}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{357}{484}$
Solution : Given: $\operatorname{cosec} \theta=1 \frac{7}{22}$ ⇒ $\operatorname{cosec} \theta=\frac{29}{22}$ We know that: $\operatorname{cosec}^{2}\theta=\cot^{2}\theta+1$ ⇒ $\cot^{2}\theta=\frac{841}{484}–1$ ⇒ $\cot^{2}\theta=\frac{841–484}{484}$ ⇒ $\cot^{2}\theta=\frac{357}{484}$ Hence, the correct answer is $\frac{357}{484}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : If $\operatorname{cosec} \theta-\cot \theta=\frac{7}{2}$, then the value of $\operatorname{cosec} \theta$ will be:
Question : If $6 \sec \theta=10$, then find the value of $\frac{5 \operatorname{cosec} \theta-3 \cot \theta}{4 \cos \theta+3 \sin \theta}$.
Question : If $0^{\circ}< \theta< 90^{\circ}$ and $\operatorname{cosec \theta} =\cot^{2}\theta$, then the value of expression $\operatorname{cosec^{4}\theta}–\operatorname{2cosec^{2}\theta}-\cot^{2}\theta$ is equal to:
Question : If $\theta$ is a positive acute angles and $\operatorname{cosec}\theta =\sqrt{3}$, then the value of $\cot \theta -\operatorname{cosec}\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile