Question : If $x^2-4 x-1=0$, then find the value of $x^2+\frac{1}{x^2}-5$.
Option 1: 17
Option 2: 12
Option 3: 15
Option 4: 13
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 13
Solution : $x^2-4 x-1=0$ $x-\frac{1}{x} = 4$ Squaring on both sides, $ x^{2} + \frac{1}{x^{2}} - 2×x×\frac{1}{x} = 16$ $ x^{2} + \frac{1}{x^{2}} = 16+2 = 18$ -----------(i) Now, $x^2+\frac{1}{x^2}-5$ = 18 – 5 = 13 Hence, the correct answer is 13.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x+\frac{1}{x}=2$, then find the value of $x^5+\frac{1}{x^5}$.
Question : If $x+\frac{1}{x}=0$, then the value of $x^{5}+\frac{1}{x^{5}}$ is:
Question : If $x^4+\frac{1}{x^4}=194, x>0$, then find the value of $x^3+\frac{1}{x^3}+x+\frac{1}{x}$
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Question : If $x+\frac{1}{x}=2$, then find the value of $x^{1823}+\frac{1}{x^{1929}}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile