Question : If $x^2+\frac{1}{x^2}=29$, then find the value of $x-\frac{1}{x}$.
Option 1: $\pm 4$
Option 2: $\pm 3 \sqrt{3}$
Option 3: $\pm 3$
Option 4: $\pm 4 \sqrt{3}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\pm 3 \sqrt{3}$
Solution : $x^2+\frac{1}{x^2}=29$ $⇒x^2+\frac{1}{x^2} - 2=29-2$ $⇒(x-\frac{1}{x})^2 = 27$ $⇒(x-\frac{1}{x})^2 = 27$ $⇒(x-\frac{1}{x}) = \pm \sqrt{27}$ $\therefore (x-\frac{1}{x}) = \pm 3\sqrt{3}$ Hence, the correct answer is $\pm 3\sqrt{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x^{4}+\frac{1}{x^{4}}=119$, then the values of $x^{3}+\frac{1}{x^{3}}$ are:
Question : If $x=\frac{1}{x-5}(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $x^2+y^2=427$ and $xy=202$, then find the value of $\frac{x+y}{x-y}$.
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile