Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then find the value of $\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}$.
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: 3
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given: $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$ ⇒ $a^2=b+c$, $b^2=c+a$, and $c^2=a+b$ Now, $\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}$ Multiplying the numerator and denominator of the first, second, and third term by $a$, $b$, and $c$ respectively. $=\frac{2a}{a+a^2}+\frac{2b}{b+b^2}+\frac{2c}{c+c^2}$ $=\frac{2a}{a+b+c}+\frac{2b}{b+a+c}+\frac{2c}{c+a+b}$ $=\frac{2a+2b+2c}{a+b+c}$ $=\frac{2(a+b+c)}{a+b+c}$ $=2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $a+b+c = 0$, then the value of $\small \frac{1}{(a+b)(b+c)}+\frac{1}{(b+c)(c+a)}+\frac{1}{(c+a)(a+b)}$ is:
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ where $a \neq b\neq c\neq 0$, then the value of $a^{2}b^{2}c^{2}$ is:
Question : If $x+\frac{1}{x}=c+\frac{1}{c}$, then the value of $x$ is:
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile