Question : If $\operatorname{cosec} A+\cot A=a \sqrt{b}$, then find the value of $\frac{\left(a^2 b-1\right)}{\left(a^2 b+1\right)}$.
Option 1: $\cos A$
Option 2: $\tan A$
Option 3: $\frac{1}{\sin A}$
Option 4: $\frac{1}{\cot A}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\cos A$
Solution : Consider, $\operatorname{cosec} A+\cot A=a \sqrt{b}$ Squaring both sides, we get, ⇒ $(\operatorname{cosec} A+\cot A)^2=a^2b$ ⇒ $\operatorname{cosec^2 }A+\cot^2A+2\operatorname{cosec} A\cot A = a^2b$ ⇒ $a^2b=\frac{1}{\sin^2 A}+\frac{\cos^2A}{\sin^2 A}+2\frac{1}{\sin A}\frac{\cos A}{\sin A}$ ⇒ $a^2b=\frac{1+\cos^2A+2\cos A}{\sin^2 A}$ ⇒ $a^2b=\frac{(1+\cos A)^2}{\sin^2A}$ ⇒ $a^2b=\frac{(1+\cos A)^2}{1-\cos^2A}$ [As $\cos^2A+\sin^2A=1$] ⇒ $a^2b=\frac{(1+\cos A)^2}{(1-\cos A)(1+\cos A)}$ [Using $a^2-b^2=(a-b)(a+b)$] ⇒ $\frac{a^2b}{1}=\frac{1+\cos A}{1-\cos A}$ Applying componendo and dividendo, ⇒ $\frac{a^2b-1}{a^2b+1}=\frac{(1+\cos A)-(1-\cos A)}{(1+\cos A)+(1-\cos A)}$ ⇒ $\frac{a^2b-1}{a^2b+1}=\frac{1+\cos A-1+\cos A)}{2}$ ⇒ $\frac{a^2b-1}{a^2b+1}=\frac{2\cos A}{2}$ ⇒ $\frac{a^2b-1}{a^2b+1}=\cos A$ Hence, the correct answer is $\cos A$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Question : Find the value of $\cos 0^{\circ}+\cos 30^{\circ}-\tan 45^{\circ}+\operatorname{cosec} 60^{\circ}+\cot 90^{\circ}$.
Question : If $\operatorname{cosec B} = \frac{3}{2}$, then what is the value of $\mathrm{\cot B \sin B} $?
Question : If $A=30^{\circ}$, then find the value of $\frac{(2 \tan A)}{\left(1-\tan^2 A\right)}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile