Question : If $\sin \theta=\frac{8}{17}$, then find the value of $\tan \theta$.
Option 1: $\frac{15}{17}$
Option 2: $\frac{8}{15}$
Option 3: $\frac{15}{8}$
Option 4: $\frac{17}{15}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{8}{15}$
Solution : Given: $\sin \theta=\frac{8}{17}=\frac{\text{perpendicular}}{\text{hypotenuse}}$ Let $\text{perpendicular}=8k$ and $\text{hypotenuse}=17k$, where $k$ is a non zero constant. Using Pythagoras theorem, $\small\text{Hypotenuse}^2=\text{Perpendicular}^2+\text{Base}^2$ ⇒ $(17k)^2=(8k)^2+\text{Base}^2$ ⇒ $\text{Base}^2=289k^2-64k^2$ ⇒ $\text{Base}^2=225k^2$ ⇒ $\text{Base}=15k$ So, $\tan \theta=\frac{\text{Perpendicular}}{\text{Base}}$ ⇒ $\tan\theta = \frac{8k}{15k}=\frac{8}{15}$ Hence, the correct answer is $\frac{8}{15}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : The value of $(\frac{1}{\sin\theta}+\frac{1}{\tan\theta})(\frac{1}{\sin\theta}-\frac{1}{\tan\theta})$ is:
Question : If $\sqrt{3} \tan \theta=3 \sin \theta$, then what is the value of $\sin ^2 \theta-\cos ^2 \theta$?
Question : If $\tan \theta=\frac{4}{3}$, then the value of $\frac{3\sin \theta+ 2\cos \theta}{3\sin \theta – 2 \cos \theta}$ is:
Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile