Question : If $\sin ^2 \theta-3 \sin \theta+2=0$, then find the value of $\theta\left(0^{\circ} \leq \theta \leq 90^{\circ}\right)$.
Option 1: 45°
Option 2: 0°
Option 3: 60°
Option 4: 90°
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 90°
Solution : Given, $\sin ^2 \theta-3 \sin \theta+2=0$ ⇒ $(\sin \theta - 1)(\sin \theta- 2)=0$ ⇒ $\sin\theta=1$ or $\sin\theta=2$ Since $\left(0^{\circ} \leq \theta \leq 90^{\circ}\right)$, ⇒ $\sin \theta=1$ ⇒ $\theta = 90^{\circ}$ Hence, the correct answer is $90^{\circ}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $\theta$ $ \left ( 0\leq \theta \leq 90^{\circ} \right )$ satisfying $2\sin^{2}\theta = 3\cos \theta$ is:
Question : If $0\leq\theta\leq 90^{\circ}$ and $4\cos^{2}\theta-4\sqrt{3}\cos\theta+3=0$, then the value of $\theta$ is:
Question : If $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right)=4$, then what will be the value of $A$? $\left(0^{\circ}<\theta<90^{\circ}\right)$
Question : If $\sin\left ( 2a+45^{\circ} \right )=\cos\left ( 30^{\circ}-a \right )$ where $0^{\circ}< a< 90^{\circ}$, then the value of a is:
Question : If $\theta$ is positive acute angle and $7\cos^{2}\theta+3\sin^{2}\theta =4$, then the value of $\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile