Question : If $m+\frac{1}{m-2}=4$, then find the value of $(m-2)^2+\frac{1}{(m-2)^2}$.
Option 1: – 2
Option 2: 4
Option 3: 0
Option 4: 2
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 2
Solution : Given, $m+\frac{1}{m-2}=4$ ⇒ $(m-2)+\frac{1}{m-2}=2$ Squaring both sides, we get: $(m-2)^2+\frac{1}{(m-2)^2}+2(m-2)(\frac{1}{m-2})=4$ ⇒ $(m-2)^2+\frac{1}{(m-2)^2}+2=4$ $\therefore(m-2)^2+\frac{1}{(m-2)^2}=2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\operatorname{cosec} \theta + \operatorname{cot} \theta = m$, find the value of$\frac{m^2 – 1}{m^2 + 1}$
Question : If $(x+\frac{1}{x})=–2$, then the value of $(x^7+\frac{1}{x^7})$ is:
Question : If $x+ \frac{1}{x} =2$, then the value of $({x}^{99}+ \frac{1}{x^{99}} –2)$ is:
Question : If $x^2+\frac{1}{x^2}=2$, then the value of $x-\frac{1}{x}$ is:
Question : If $\mathrm{K}+\frac{1}{\mathrm{~K}}+2=0$ and $\mathrm{K}<0$, then what is the value of $\mathrm{K}^{11}+\frac{1}{\mathrm{~K}^4}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile