Question : If $\sin \theta-\cos \theta=\frac{4}{5}$, then find the value of $\sin \theta+\cos \theta$.
Option 1: $ \frac{5}{\sqrt{34}} $
Option 2: $ \frac{5}{\sqrt{24}} $
Option 3: $ \frac{\sqrt{34}}{5} $
Option 4: $ \frac{\sqrt{24}}{5}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $ \frac{\sqrt{34}}{5} $
Solution : $\sin \theta-\cos \theta=\frac{4}{5}$ ⇒ $(\sin \theta-\cos \theta)^2=(\frac{4}{5})^2$ ⇒ $\sin^2 \theta + \cos^2 \theta -2\sin \theta \cos \theta = \frac{16}{25}$ ⇒ $1-2\sin \theta \cos \theta = \frac{16}{25}$ ⇒ $2\sin \theta \cos \theta = \frac{25-16}{25}$ ⇒ $2\sin \theta \cos \theta = \frac{9}{25}$ -------------(i) Adding $\sin^2 \theta + \cos^2 \theta$ on both sides of equation (i), $\sin^2 \theta + \cos^2 \theta +2\sin \theta \cos \theta = \sin^2 \theta + \cos^2 \theta+ \frac{9}{25}$ ⇒ $(\sin \theta+\cos \theta)^2= 1+\frac{9}{25}$ ⇒ $\sin \theta+\cos \theta = \sqrt{\frac{25+9}{25}} = \frac{\sqrt{34}}{5}$ Hence, the correct answer is $\frac{\sqrt{34}}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Question : If $\cos \theta+\cos ^2 \theta=1$, find the value of $\sqrt{\sin ^4 \theta+\cos ^2 \theta}$.
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\sqrt{3} \tan \theta=3 \sin \theta$, then what is the value of $\sin ^2 \theta-\cos ^2 \theta$?
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile