Question : If $x^4+\frac{16}{x^4}=15617, x>0$, then find the value of $x+\frac{2}{x}$.
Option 1: $\sqrt{121}$
Option 2: $\sqrt{129}$
Option 3: $\sqrt{123}$
Option 4: $\sqrt{127}$
Correct Answer: $\sqrt{129}$
Solution :
Given: $x^4+\frac{16}{x^4}=15617$
⇒ $(x^2)^2 + (\frac{4}{x^2})^2 + 2\times x^2 \times \frac{4}{x^2} = 15617 + 2\times x^2 \times \frac{4}{x^2}$
⇒ $(x^2+\frac{4}{x^2})^2 = 15625$
⇒ $x^2 + \frac{4}{x^2} = 125$
⇒ $x^2 + (\frac{2}{x})^2 + 2\times x \times \frac{2}{x} = 125 + 2\times x\times \frac{2}{x}$
⇒ $(x+\frac{2}{x})^2 = 129$
⇒ $x+\frac{2}{x} = \sqrt{129}$
Hence, the correct answer is $\sqrt{129}$.
Related Questions
Know More about
Staff Selection Commission Combined Grad ...
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Get Updates BrochureYour Staff Selection Commission Combined Graduate Level Exam brochure has been successfully mailed to your registered email id “”.