Question : If $x^4+\frac{16}{x^4}=15617, x>0$, then find the value of $x+\frac{2}{x}$.
Option 1: $\sqrt{121}$
Option 2: $\sqrt{129}$
Option 3: $\sqrt{123}$
Option 4: $\sqrt{127}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{129}$
Solution : Given: $x^4+\frac{16}{x^4}=15617$ ⇒ $(x^2)^2 + (\frac{4}{x^2})^2 + 2\times x^2 \times \frac{4}{x^2} = 15617 + 2\times x^2 \times \frac{4}{x^2}$ ⇒ $(x^2+\frac{4}{x^2})^2 = 15625$ ⇒ $x^2 + \frac{4}{x^2} = 125$ ⇒ $x^2 + (\frac{2}{x})^2 + 2\times x \times \frac{2}{x} = 125 + 2\times x\times \frac{2}{x}$ ⇒ $(x+\frac{2}{x})^2 = 129$ ⇒ $x+\frac{2}{x} = \sqrt{129}$ Hence, the correct answer is $\sqrt{129}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\frac{1}{x-3},(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $2x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$, then the value of $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ is:
Question : If $\left(x^2+\frac{1}{x^2}\right)=7$, and $0<x<1$, find the value of $x^2-\frac{1}{x^2}$.
Question : If $(x+\frac{1}{x})=6$ and $x>1$, find the value of $(x^2–\frac{1}{x^2})$.
Question : If $x=\sqrt{–\sqrt{3}+\sqrt{3+8 \sqrt{7+4 \sqrt{3}}}}$ where $x > 0$, then the value of $x$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile