Question : If $p^2+\frac{1}{p^2}=14$, then find the value of $\left(p^3+\frac{1}{p^3}\right)$.
Option 1: 56
Option 2: 60
Option 3: 48
Option 4: 52
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 52
Solution : Given: $p^2+\frac{1}{p^2}=14$ we know that, $p^2+\frac{1}{p^2}=(p+\frac{1}{p})^2-2\times p\times \frac{1}{p}$ $⇒(p+\frac{1}{p})^2-2\times p\times \frac{1}{p}=14$ $⇒(p+\frac{1}{p})^2=14+2$ $⇒(p+\frac{1}{p})^2=16$ $⇒(p+\frac{1}{p})=4$ Now cubing both sides, we get: $⇒(p+\frac{1}{p})^3=4^3$ $⇒p^3+\frac{1}{p^3}+3\times p\times \frac{1}{p}(p+ \frac{1}{p})=4^3$ $⇒p^3+\frac{1}{p^3}+3\times4=64$ $⇒p^3+\frac{1}{p^3}=64-12$ $⇒p^3+\frac{1}{p^3}=52$ Hence, the correct answer is 52.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\left(z+\frac{1}{z}\right)=4$, then what will be the value of $\frac{1}{2}\left(z^2+\frac{1}{z^2}\right)$?
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : If $\left(a+\frac{1}{a}\right)=6$, then what is the value of $\frac{3}{4}\left(a^2+\frac{1}{a^2}\right)$?
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Question : If $3a^{2}= b^{2}\neq0$, then the value of $\frac{\left (a+b \right)^{3}-\left (a-b \right)^{3}}{\left (a+b \right)^{2}+\left (a-b \right)^{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile