Question : If $A+\frac{1}{A}=-1$, then find the value of $\frac{{A}^6+{A}^3-1}{{~A}^9+{A}^3-1}$.
Option 1: 0
Option 2: –1
Option 3: 2
Option 4: 1
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : $A+\frac{1}{A}=-1$ ⇒ $A^2+A+1=0$ Now, $A^3-1^3 = (A-1) (A^2+A+1)$ ⇒$A^3-1 = (A-1)\times 0$ ⇒$A^3-1 =0$ ⇒$A^3=1$ So, $\frac{{A}^6+{A}^3-1}{{~A}^9+{A}^3-1}$ $=\frac{{(A^3)}^2+{A}^3-1}{{(A^3)}^3+{A}^3-1}$ $=\frac{1^2+1-1}{1^3+1-1}$ $= 1$ Hence, the correct answer is 1.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\mathrm{N}+\frac{1}{\mathrm{~N}}=\sqrt{3}$, then find the value of $\mathrm{N}^6+\frac{1}{\mathrm{~N}^6}+11$.
Question : If $\frac{1}{a}–\frac{1}{b}=\frac{1}{a–b}$, then the value of $a^{3}+b^{3}$ is:
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : If $a+\frac{1}{a}=\sqrt{3}$, then the value of $a^{18}+a^{12}+a^{6}+1$ is:
Question : If $a^3+b^3=9$ and $a+b=3$, then the value of $\frac{1}a+\frac{1}b$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile