Question : If $6 \sec \theta=10$, then find the value of $\frac{5 \operatorname{cosec} \theta-3 \cot \theta}{4 \cos \theta+3 \sin \theta}$.
Option 1: $\frac{2}{3}$
Option 2: $\frac{3}{2}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{6}{5}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{5}{6}$
Solution : Given, $6 \sec \theta=10$ ⇒ $\sec\theta=\frac{10}{6}=\frac53$ We know, $\sec\theta = \frac{1}{\cos\theta},\sin^2\theta+\cos^2\theta=1\text{ and }\operatorname{cosec\theta}=\frac{1}{\sin\theta}$ ⇒ $\cos\theta=\frac{3}{5}$ ⇒ $\sin\theta=\sqrt{1-\cos^2\theta}$ ⇒ $\sin\theta=\sqrt{1-(\frac{3}{5})^2}$ ⇒ $\sin\theta=\sqrt{1-\frac{9}{25}}$ ⇒ $\sin\theta=\sqrt{\frac{25-9}{25}}$ ⇒ $\sin\theta=\sqrt{\frac{16}{25}}$ ⇒ $\sin\theta=\frac{4}{5}$ ⇒ $\operatorname{cosec\theta}=\frac54$ ⇒ $\cot\theta=\frac{\cos\theta}{\sin\theta}=\frac{3}{4}$ So, $\frac{5 \operatorname{cosec} \theta-3 \cot \theta}{4 \cos \theta+3 \sin \theta}=\frac{5\times\frac54-3\times\frac34}{4\times\frac35+3\times\frac45}=\frac{\frac{25}{4}-\frac{9}{4}}{\frac{12}{5}+\frac{12}{5}}=\frac{\frac{16}{4}}{\frac{24}{5}}=\frac{16\times5}{4\times 24}=\frac56$ Hence, the correct answer is $\frac56$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : If $6 \cot \theta=5$, then find the value of $\frac{(6 \cos \theta+\sin \theta)}{(6 \cos\theta-4 \sin\theta)}$
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Question : If $\sin \theta-\cos \theta=\frac{1}{5}$, then find the value of $\sin \theta+\cos \theta$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile