Question : If $\sin m+\sin n=p, \cos m+\cos n=q$, then find the value of $\sin m \times \sin n+\cos m \times \cos n$.
Option 1: $p^2+q^2-2$
Option 2: $\frac{p^2+q^2-2}{2}$
Option 3: $p+q-p q$
Option 4: $p+q+p q$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{p^2+q^2-2}{2}$
Solution : Given, $\sin m+\sin n=p$ and $ \cos m+\cos n=q$ Consider, $\sin m + \sin n = p$ Squaring both sides, ⇒ $(\sin m + \sin n)^2 = p^2$ ⇒ $\sin^2m+\sin^2n+2\sin m\sin n=p^2$ We know, $\sin^2x+\cos^2x=1$ ⇒ $1 - \cos^2 m + 1 - \cos^2 n + 2 × \sin m × \sin n = p^2$ ................(i) Now, consider, $\cos m + \cos n = q$ Squaring both sides ⇒ $\cos^2 m + \cos^2 n + 2 × \cos m × \cos n = q^2$ ................(ii) Add equation (i) and (ii), ⇒ $(1 - \cos^2 m + 1 - cos^2 n + 2 × \sin m × \sin n) +(\cos^2 m + \cos^2 n + 2 × \cos m × \cos n)= p^2+q^2$ ⇒ $2 + 2 × \sin m × \sin n + 2 × \cos m × \cos n = p^2 + q^2$ ⇒ $2(\sin m × \sin n + \cos m ×\cos n) = p^2 + q^2 - 2$ ⇒ $\sin m × \sin n + \cos m × \cos n = \frac{p^2 + q^2 - 2}{2}$ Hence, the correct answer is $\frac{p^2 + q^2 - 2}{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\cos 20°= m$ and $\cos 70°=n$, then the value of $m^2+n^2$:
Question : If $\sin \theta-\cos \theta=\frac{1}{5}$, then find the value of $\sin \theta+\cos \theta$.
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Question : If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$, then the value of $\sin^{4}\theta$ is:
Question : If $\sin \theta \cos \theta=\frac{1}{\sqrt{3}}$ then the value of $\left(\sin ^4 \theta+\cos ^4 \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile