Question : If $\sin A=\frac{\sqrt{3}}{2}, 0<A<90^{\circ}$, then find the value of $2(\operatorname{cosec} A + \cot A)$.
Option 1: $2 \sqrt{3}$
Option 2: $\sqrt{3}$
Option 3: $\frac{2}{\sqrt{3}}$
Option 4: $\frac{1}{\sqrt{3}}$
Correct Answer: $2 \sqrt{3}$
Solution : Given: $\sin A\ =\ \frac{\sqrt{3}}{2}=\sin 60^\circ$ $\Rightarrow A\ =\ 60^\circ$ Now, putting the value of A, we get, $2(\operatorname{cosec} A + \cot A)$ $=\ 2(\operatorname{cosec} 60^\circ + \cot 60^\circ)$ $=\ 2(\frac{2}{\sqrt{3}}\ +\ \frac{1}{\sqrt{3}})$ $=\ 2(\frac{3}{\sqrt{3}})$ $=\ 2\sqrt{3}$ Hence the value of expression is $2\sqrt{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Question : The value of $\frac{\sin A}{\cot A+\operatorname{cosec} A}-\frac{\sin A}{\cot A-\operatorname{cosec} A}+1$ is:
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile