Question : If $x^{3}+\frac{1}{x^{3}}=110$, then find the value of $x+\frac{1}{x}$:
Option 1: 2
Option 2: 3
Option 3: 4
Option 4: 5
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 5
Solution : Given: $x^{3}+\frac{1}{x^{3}}=110$ By using the algebraic identity, $x^{3}+\frac{1}{x^{3}}=(x+\frac{1}{x})^3–3×x×\frac{1}{x}(x+\frac{1}{x})$ ⇒ $110 = (x+\frac{1}{x})^3–3(x+\frac{1}{x})$ Now, putting the value of $(x+\frac{1}{x})=y$ ⇒ $110 = y^3–3y$ By using trial and error, putting y = 5, we get ⇒ $110 = 5^3–3×5$ ⇒ $110 = 125–15$ $110 =110$ Thus, $(x+\frac{1}{x})=5$ Hence, the correct answer is 5.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $(x+\frac{1}{x})$ = 5, then the value of $\frac{5x}{x^{2}+5x+1}$ is:
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $x+\frac{1}{x}=5$, then the value of $\frac{x}{1+x+x^2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile