Question : If $\operatorname{cosec} A+\cot A=3$, $0 \leq A \leq 90^{\circ}$, then find the value of cos A.
Option 1: $\frac{3}{4}$
Option 2: $\frac{2}{5}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{4}{5}$
Correct Answer: $\frac{4}{5}$
Solution : Given, $\operatorname{cosec} A+\cot A=3$ ⇒ $\frac{1}{\sin A}+\frac{\cos A}{\sin A}=3$ ⇒ $1+\cos A = 3\sin A$ We know, $\sin^2A+\cos^2A=1$ ⇒ $1+\cos A = 3\sqrt{1-\cos^2A}$ Squaring both sides, ⇒ $(1+\cos A)^2=9(1-\cos^2A)$ ⇒ $1+\cos^2 A+2\cos A=9-9\cos^2A$ ⇒ $10\cos^2A+2\cos A-8=0$ ⇒ $5\cos^2A+\cos A - 4=0$ ⇒ $5\cos^2A+5\cos A-4\cos A - 4=0$ ⇒ $5\cos A(\cos A + 1)-4(\cos A + 1)=0$ ⇒ $(5\cos A-4)(\cos A + 1)=0$ ⇒ $\cos A = \frac45$ and $\cos A = -1$ $\cos A = -1$ will be rejected as $0 \leq A \leq 90^{\circ}$ ⇒ $\cos A = \frac45$ Hence, the correct answer is $\frac45$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\tan A=\frac{4}{3}, 0 \leq A \leq 90^{\circ}$, then find the value of $\sin A$.
Question : If $A+B=90^{\circ}$, then the expression $\frac{\cot A}{\cot B}+\cos ^2 A+\cos ^2 B$ is equal to:
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Question : If $\cos A=\frac{15}{17}, 0 \leq A \leq 90^{\circ}$, then the value of $\cot(90° - A)$ is:
Question : If $\sin A=\frac{\sqrt{3}}{2}, 0<A<90^{\circ}$, then find the value of $2(\operatorname{cosec} A + \cot A)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile