Question : If $\cos A=\frac{1}{11}$, then find the value of cot A.
Option 1: $\frac{2 \sqrt{30}}{11}$
Option 2: $2 \sqrt{30}$
Option 3: $\frac{1}{2 \sqrt{30}}$
Option 4: $\frac{11}{2 \sqrt{30}}$
Correct Answer: $\frac{1}{2 \sqrt{30}}$
Solution : Given, $\cos A=\frac{1}{11}$ We know, $\sin^2\theta+\cos^2\theta=1$ ⇒ $\sin^2A+\cos^2A=1$ ⇒ $\sin^2A+\frac{1}{11^2}=1$ ⇒ $\sin^2A=1-\frac{1}{121}$ ⇒ $\sin^2A=\frac{121-1}{121}$ ⇒ $\sin^2 A=\frac{120}{121}$ ⇒ $\sin A=\sqrt{\frac{120}{121}}$ ⇒ $\sin A=\frac{2\sqrt{30}}{11}$ ⇒ $\cot A = \frac{\cos A}{\sin A}$ ⇒ $\cot A = \frac{\frac{1}{11}}{\frac{2\sqrt{30}}{11}}$ ⇒ $\cot A=\frac{1}{2\sqrt{30}}$ Hence, the correct answer is $\frac{1}{2\sqrt{30}}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $7 \sin ^2 A+3 \cos ^2 A=4$, then find $\cot A$:
Question : Find the value of $\sqrt{\frac{1-\tan A}{1+\tan A}}$.
Question : If $\frac{2 \sin A-\cos A}{\sin A+\cos A}=1$, then find the value of $\cot A$.
Question : If $\sin A=\frac{\sqrt{3}}{2}, 0<A<90^{\circ}$, then find the value of $2(\operatorname{cosec} A + \cot A)$.
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then the value of $(\cos \theta-\sin \theta)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile