Question : If $a^2+b^2+c^2+216=12(a+b-2 c)$, then $\sqrt{a b-b c+c a}$ is:
Option 1: 8
Option 2: 3
Option 3: 6
Option 4: 4
Correct Answer: 6
Solution : Given: $a^2+b^2+c^2+216=12(a+b-2 c)$ Rearranging and simplifying ⇒ $a^2 - 12a + b^2 - 12b + c^2 + 24c + 216 = 0$ ⇒ $a^2 - 12a + 36 + b^2 - 12b + 36 + c^2 + 24c + 144 = 0$ ⇒ $(a - 6)^2 + (b - 6)^2 + (c + 12)^2 = 0$ $\therefore a = 6, b = 6,$ and $c = -12$ Now, $\sqrt{a b-b c+c a}$ $=\sqrt{6 \times 6 -(6 \times (-12))+ (-12) \times 6}$ $=\sqrt{36 + 72 - 72}$ $= \sqrt{36} = 6$ Hence, the correct answer is 6.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $\frac{\sqrt{24} + \sqrt{216}}{\sqrt{96}}$ is equal to:
Question : $\frac{\sqrt{24}+\sqrt{216}}{\sqrt{96}}$ is equal to:
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then the value of $(3 A+B-\sqrt{15} C)$ is:
Question : The smallest among $\sqrt[6]{12},\sqrt[3]{4},\sqrt[4]{5},\sqrt3$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile