Question : If $4r=h+\sqrt{r^2+h^2}$, then $r:h$ is?$(r\neq0)$
Option 1: 17 : 8
Option 2: 8 : 17
Option 3: 8 : 15
Option 4: 15 : 8
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 8 : 15
Solution : Given: $4r=h+\sqrt{r^2+h^2}$ ⇒ $4r-h=\sqrt{r^2+h^2}$ Squaring both sides we get, ⇒ $16r^2+h^2-8rh=r^2+h^2$ ⇒ $15r^2=8rh$ ⇒ $15r=8h$ ⇒ $\frac{r}{h}=\frac{8}{15}$ Therefore, $r:h=8:15$ Hence, the correct answer is 8 :15.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2r=h+\sqrt{r^{2}+h^{2}}$, then the ratio of $r:h (r\neq 0)$ is:
Question : If $r\sin\theta=1$, $r\cos\theta=\sqrt{3}$, then the value of $(\sqrt{3}\tan\theta+1)$ is:
Question : If $\sin \theta=\frac{8}{17}$, then find the value of $\tan \theta$.
Question : The value of $5–\frac{8+2\sqrt{15}}{4}–\frac{1}{8+2\sqrt{15}}$ is equal to:
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile