Question : If $p=\frac{5}{18}$, then $27p^{3}–\frac{1}{216}–\frac{9}{2}p^{2}+\frac{1}{4}p$ is equal to:
Option 1: $\frac{4}{27}$
Option 2: $\frac{5}{27}$
Option 3: $\frac{8}{27}$
Option 4: $\frac{10}{27}$
Correct Answer: $\frac{8}{27}$
Solution : Given: $p=\frac{5}{18}$ So, $27p^{3}–\frac{1}{216}–\frac{9}{2}p^{2}+\frac{1}{4}p$ Putting the value of $p=\frac{5}{18}$ in the expression, = $27×(\frac{5}{18})^{3}–\frac{1}{216}–\frac{9}{2}×(\frac{5}{18})^{2}+\frac{1}{4}×\frac{5}{18}$ = $27×(\frac{125}{18×18×18})–\frac{1}{216}–\frac{9}{2}×(\frac{25}{18×18})+\frac{1}{4}×\frac{5}{18}$ = $\frac{125}{216}–\frac{1}{216}–\frac{25}{72}+\frac{5}{72}$ = $\frac{124}{216}–\frac{20}{72}$ = $\frac{124–60}{216}$ = $\frac{64}{216}$ = $\frac{8}{27}$ Hence, the correct answer is $\frac{8}{27}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $A+\frac{1}{1+\frac{1}{2+\frac{1}{3}}}=\frac{9}{10}$, then the value of A is:
Question : The value of $6 \frac{8}{15}÷\frac{7}{9}$ of $\left(1 \frac{1}{10}+5 \frac{1}{5}\right)+\frac{2}{5}÷7 \frac{1}{5}$ is:
Question : Simplify the following. $81^{\frac{3}{4}}+[(20 \div 5 \text { of } 3 \times 6)+\{(8 \div 24 \text { of } 3) \times 4\}-10 \div 5]-\left(\frac{1}{32}\right)^{-\frac{2}{5}}$
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}+\frac{3}{4} \div \frac{1}{2}$ is:
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}-\frac{3}{4}+\frac{3}{4} \div \frac{1}{2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile