Question : If $5x+\frac{1}{x}=10$, then $x^2+\frac{1}{25x^2}$ is equal to:
Option 1: $2\frac{1}{5}$
Option 2: $3\frac{1}{5}$
Option 3: $3\frac{3}{5}$
Option 4: $2\frac{3}{5}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3\frac{3}{5}$
Solution : Given: $5x+\frac{1}{x}=10$ We know that the algebraic identity, $(a+b)^2=a^2+b^2+2ab$. $5x+\frac{1}{x}=10$ On squaring both sides of the above equation, we get, $(5x+\frac{1}{x})^2=10^2$ ⇒ $25x^2+\frac{1}{x^2}+10=100$ ⇒ $25x^2+\frac{1}{x^2}=90$ Divide by 25 on both sides of the above equation, we get, $x^2+\frac{1}{25x^2}=\frac{90}{25}$ ⇒ $x^2+\frac{1}{25x^2}=\frac{18}{5}=3\frac{3}{5}$ Hence, the correct answer is $3\frac{3}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x+\frac{1}{x})$ = 5, then the value of $\frac{5x}{x^{2}+5x+1}$ is:
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $2\cot x=5$, then what is $\frac{2 \cos x-\sin x}{2 \cos x+\sin x}$ equal to?
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $\frac{5x}{2}-\frac{[7(6x-\frac{3}{2})]}{4}=\frac{5}{8}$, then what is the value of $x$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile