Question : If $x \sin 45° = y\operatorname{cosec} 30°$, then $\frac{x^4}{y^4}$ is equal to:
Option 1: $4^3$
Option 2: $6^3$
Option 3: $2^3$
Option 4: $8^3$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4^3$
Solution : Given: If $x \sin \ 45° = y \operatorname{cosec} 30°$. $⇒\frac{x}{y} = \frac{\operatorname{cosec}30°}{\sin 45°}$ Substitute the values of the given trigonometric ratios, we get, $⇒\frac{x}{y} = \frac{2}{\frac{1}{\sqrt{2}}}$ $⇒\frac{x}{y} = (2\sqrt{2})$ On both sides of the above equation, taking the fourth power gives us, $⇒\frac{x^{4}}{y^{4}} = (2 \sqrt{2})^{4}$ $⇒\frac{x^{4}}{y^{4}} = 4^{3}$ Hence, the correct answer is $4^3$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2\cot x=5$, then what is $\frac{2 \cos x-\sin x}{2 \cos x+\sin x}$ equal to?
Question : If $\sec( 4x-50°)=\operatorname{cosec}( 50°-x)$, then the value of $x$ is:
Question : If $\operatorname{cosec}\theta+\sin\theta=\frac{5}{2}$, then the value of $(\operatorname{cosec}\theta-\sin\theta)$ is:
Question : If ${\operatorname{cosec} 39^{\circ}} = x$, then the value of $ \frac{1}{\operatorname{cosec}^2 51^{\circ}} +\sin^239^{\circ} +\tan ^251^{\circ} -\frac{1}{\sin ^2 51^{\circ} \sec ^2 39^{\circ}}$ is:
Question : If $x=8(\sin \theta+\cos \theta)$ and $y=9(\sin \theta-\cos \theta)$, then the value of $\frac{x^2}{8^2}+\frac{y^2}{9^2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile