Question : If $\cos 21^{\circ}=\frac{x}{y}$, then $(\operatorname{cosec21^{\circ}}-\cos 69^{\circ})$ is equal to:
Option 1: $\frac{x^{2}}{y\sqrt{y^{2}-x^{2}}}$
Option 2:
$\frac{y^{2}}{x\sqrt{y^{2}-x^{2}}}$
Option 3:
$\frac{y^{2}}{x\sqrt{x^{2}-y^{2}}}$
Option 4: $\frac{x^{2}}{y\sqrt{x^{2}-y^{2}}}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{x^{2}}{y\sqrt{y^{2}-x^{2}}}$
Solution : Given: $\cos 21^{\circ}=\frac{x}{y}$ So, $\cos 69^{\circ}=\cos (90^{\circ}-21^{\circ})=\sin 21^{\circ}= \sqrt{1-\cos^2 21º}=\sqrt{1-\frac{x^2}{y^2}}=\frac{\sqrt{y^2-{x^2}}}{y}$ Also, $\operatorname{cosec21^{\circ}}=\frac{1}{\sin 21^{\circ}}=\frac{y}{\sqrt{y^2-{x^2}}}$ Now, $(\operatorname{cosec21^{\circ}}-\cos 69^{\circ})=\frac{y}{\sqrt{y^2-{x^2}}}-\frac{\sqrt{y^2-{x^2}}}{y}$ ⇒ $(\operatorname{cosec21^{\circ}}-\cos 69^{\circ})=\frac{y^2-(y^2-x^2)}{y\sqrt{y^2-{x^2}}}=\frac{x^{2}}{y\sqrt{y^{2}-x^{2}}}$ Hence, the correct answer is $\frac{x^{2}}{y\sqrt{y^{2}-x^{2}}}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\cos\theta = \frac{x^2\:-\:y^2}{x^2\:+\:y^2}$, then the value of $\cot\theta$ is equal to:
Question : If $x\cos^{2}30^{\circ}\cdot \sin60^{\circ}=\frac{\tan^{2}45^{\circ}\cdot \sec60^{\circ}}{\operatorname{cosec}60^{\circ}}$, then the value of $x$ is:
Question : If ${\operatorname{cosec} 39^{\circ}} = x$, then the value of $ \frac{1}{\operatorname{cosec}^2 51^{\circ}} +\sin^239^{\circ} +\tan ^251^{\circ} -\frac{1}{\sin ^2 51^{\circ} \sec ^2 39^{\circ}}$ is:
Question : If $3 \sin x+4 \cos x=2$, then the value of $3 \cos x – 4 \sin x$ is equal to:
Question : In a $\triangle ABC, \angle B=\frac{\pi}{3}, \angle C=\frac{\pi}{4}$ and D divides BC internally in the ratio 1 : 3, then $\frac{\sin \angle BAD}{\sin \angle CAD}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile