Question : If $\tan \alpha = 6$, then $\sec \alpha$ is equal to:
Option 1: $\sqrt{7}$
Option 2: $\sqrt{5}$
Option 3: $\sqrt{37}$
Option 4: $\sqrt{35}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{37}$
Solution : Given: $\tan \alpha=6$ We know, $\sec^2 \alpha-\tan^2 \alpha=1$ ⇒ $\sec^2 \alpha-6^2=1$ ⇒ $\sec^2 \alpha=36+1$ $\therefore \sec \alpha=\sqrt{37}$ Hence, the correct answer is $\sqrt{37}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\tan (\alpha+\beta)=\sqrt{3}, \tan (\alpha-\beta)=1$ where $(\alpha+\beta)$ and $(\alpha-\beta)$ are acute angles, then what is $\tan$ $(6 \alpha) ?$
Question : Find the value of $\sec\theta - \tan\theta$, if $\sec\theta + \tan\theta = \sqrt{5}$.
Question : If $\tan(\alpha -\beta)=1,\sec(\alpha +\beta)=\frac{2}{\sqrt{3}}$ and $\alpha ,\beta$ are positive, then the smallest value of $\alpha$ is:
Question : Using $\operatorname{cosec}(\alpha+\beta)=\frac{\sec \alpha \times \sec \beta \times \operatorname{cosec} \alpha \times \operatorname{cosec} \beta}{\sec \alpha \times \operatorname{cosec} \beta+\operatorname{cosec} \alpha \times \sec \beta}$, find the value of
Question : In a triangle $XYZ$ right-angled at $Y$, if $XY=2\sqrt{6}$ and $XZ-YZ=2$, then $\sec X+\tan X$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile