Question : If $\small 1^{2}+2^{2}+3^{2}+......+\ p^{2}=\frac{p(p+1)(2p+1)}{6}$, then $\small 1^{2}+3^{2}+5^{2}+......+17^{2}$ is equal to:
Option 1: 1785
Option 2: 1700
Option 3: 980
Option 4: 969
Correct Answer: 969
Solution : Given: $1^{2}+2^{2}+3^{2}+......+p^{2}=\frac{p(p+1)(2p+1)}{6}$ So, $1^{2}+2^{2}+3^{2}+......+17^{2}=\frac{17(17+1)(2\times 17+1)}{6}$-----------------(1) Also, $2^{2}+4^{2}+6^{2}+......+16^{2}=2^{2}(1^{2}+2^{2}+3^{2}+......+8^{2})$ $⇒2^{2}+4^{2}+6^{2}+......+16^{2}=2^{2}(\frac{8(8+1)(2\times 8+1)}{6})$----------------(2) Subtracting equation (2) from equation (1), we get, $1^{2}+3^{2}+5^{2}+......+17^{2}=\frac{17(17+1)(2\times 17+1)}{6}-2^{2}(\frac{8(8+1)(2\times 8+1)}{6})$ $\therefore1^{2}+3^{2}+5^{2}+......+17^{2}= 969$ Hence, the correct answer is 969.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\cos ^4 \alpha-\sin ^4 \alpha=\frac{5}{6}$, then the value of $2 \cos ^2 \alpha-1$ is:
Question : If $\sin A=\frac{2}{3}$, then find the value of (7 – tan A)(3 + cos A).
Question : If $p=\frac{5}{18}$, then $27p^{3}–\frac{1}{216}–\frac{9}{2}p^{2}+\frac{1}{4}p$ is equal to:
Question : $(1-\frac{1}{5})(1-\frac{1}{6})(1-\frac{1}{7}).......(1-\frac{1}{100})$ is equal to:
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}-\frac{3}{4}+\frac{3}{4} \div \frac{1}{2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile