Question : If $a\sin\theta+b\cos\theta=c$, then $a\cos\theta-b\sin\theta$ is equal to:
Option 1: $\pm \sqrt{a+b-c}$
Option 2: $\pm \sqrt{a^{2}+b^{2}+c^{2}}$
Option 3: $\pm \sqrt{a^{2}+b^{2}-c^{2}}$
Option 4: $\pm \sqrt{c^{2}+a^{2}-b^{2}}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\pm \sqrt{a^{2}+b^{2}-c^{2}}$
Solution : Given $a\sin\theta+b\cos\theta=c$ Squaring both sides, we get: $(a\sin\theta+b\cos\theta)^2=c^2$ ⇒ $a^2\sin^2\theta+b^2\cos^2\theta+2ab\sin\theta\cos\theta=c^2$ ⇒ $a^2(1-\cos^2\theta)+b^2(1-\sin^2\theta)+2ab\sin\theta\cos\theta=c^2$ ⇒ $a^2-a^2\cos^2\theta+b^2-b^2\sin^2\theta+2ab\sin\theta\cos\theta=c^2$ ⇒ $-a^2\cos^2\theta-b^2\sin^2\theta+2ab\sin\theta\cos\theta=c^2-a^2-b^2$ ⇒ $-(a^2\cos^2\theta+b^2\sin^2\theta-2ab\sin\theta\cos\theta)=-(-c^2+a^2+b^2)$ ⇒ $(a\cos\theta-b\sin\theta)^2=(-c^2+a^2+b^2)$ ⇒ $(a\cos\theta-b\sin\theta)=\pm\sqrt{a^2+b^2-c^2}$ Hence, the correct answer is $\pm\sqrt{a^2+b^2-c^2}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\cos\theta+\sin\theta=\sqrt{2}\cos\theta$, then $\cos\theta-\sin\theta$ is:
Question : If $\cos \theta+\cos ^2 \theta=1$, find the value of $\sqrt{\sin ^4 \theta+\cos ^2 \theta}$.
Question : If $\sin\theta +\cos\theta=\sqrt{2}\sin(90^{\circ}-\theta)$, then the value of $\cot\theta$ is:
Question : $ \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}+\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=$________.
Question : If $\sin \theta+\sin ^2 \theta=1$, then the value of $\cos ^2 \theta+\cos ^4 \theta$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile