Question : If $\cos A+\sin A=\sqrt{2}\cos A$, then $\cos A-\sin A$ is equal to: (where $0^{\circ}< A< 90^{\circ}$)
Option 1: $\sqrt{2}\sin A$
Option 2: $2\sin A$
Option 3: $2\sqrt{\sin A}$
Option 4: $\sqrt{2\sin A}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{2}\sin A$
Solution : $\cos A+\sin A = \sqrt{2}\cos A$ $⇒\sin A = (\sqrt{2}-1)\cos A$ $⇒\frac {\sin A}{\cos A}=\sqrt{2}-1$ $⇒\frac {\sin A}{\cos A}=(\sqrt{2}-1)×\frac{(\sqrt{2}+1)}{(\sqrt{2}+1)}$ $⇒\frac {\sin A}{\cos A}=\frac{1}{\sqrt{2}+1}$ $⇒\cos A=(\sqrt{2}+1)\sin A$ $⇒\cos A=\sqrt{2}\sin A+\sin A$ $⇒\cos A - \sin A = \sqrt{2}\sin A$ Hence, the correct answer is $\sqrt{2}\sin A$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Question : If $\sin 2\theta=\frac{\sqrt{3}}{2}$, then the value of $\sin 3\theta$ is equal to $(0^{\circ}\leq \theta\leq 90^{\circ})$:
Question : If $0^{\circ} < \theta < 90^{\circ}$ and $2 \sin^{2}\theta +3\cos\theta =3$, then the value of $\theta$ is:
Question : If $4\sin^{2}\theta-1=0$ and angle $\theta$ is less then $90^{\circ}$, the value of $\cos^{2}\theta+\tan^{2}\theta$ is: (Take $0^{\circ}< \theta< 90^{\circ}$)
Question : If $\theta$ is a positive acute angle and $4\cos ^{2}\theta -4\cos \theta +1=0$, then the value of $\tan (\theta -15^{\circ})$is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile