Question : If $p = 5 + 2\sqrt6$, then $\frac{\sqrt p - 1}{\sqrt p}$ is:
Option 1: $1 + \sqrt2 - \sqrt3$
Option 2: $1 - \sqrt2 + \sqrt3$
Option 3: $ - 1 + \sqrt2 - \sqrt3$
Option 4: $1 - \sqrt2 - \sqrt3$
Correct Answer: $1 + \sqrt2 - \sqrt3$
Solution : $p = 5 + 2\sqrt{6}$ = $(\sqrt{3})^2 + (\sqrt{2})^2 + 2\sqrt{6}$ = $(\sqrt{3} + \sqrt{2})^2 $ Now, $\sqrt{p}=\sqrt{3} + \sqrt{2}$ So, $\frac{1}{\sqrt{p}} = \sqrt{3} - \sqrt{2}$ (by rationalisation) Thus, $\frac{\sqrt{p} - 1}{\sqrt{p}} = \frac{\sqrt{p}}{\sqrt{p}} - \frac{{1}}{\sqrt{p}} = 1 - \frac{{1}}{\sqrt{p}}$ Putting the value we get, $1 - (\sqrt{3} - \sqrt{2})=1 - \sqrt{3} + \sqrt{2}$ Hence, the correct answer is $1 + \sqrt{2} - \sqrt{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{N}=\frac{(\sqrt6+\sqrt5)}{(\sqrt6-\sqrt5)}$, what is the value of $N$?
Question : If $N=\frac{(\sqrt7-\sqrt3)}{(\sqrt7+\sqrt3)}$, then what is the value of $(N+\frac{1}{N})$?
Question : If $x=3 - 2\sqrt2$, then $\sqrt x+(\frac{1}{\sqrt x})$ is equal to:
Question : If $\sin A=\frac{1}{2}$, then the value of $(\tan A+\cos A)$ is:
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile